How to create successful AI agent data?
Original author: jlwhoo7, Crypto Kol
Original translation: zhouzhou, BlockBeats
Editor's note:This article shares tools and methods that help improve the performance of AI agents, with a focus on data collection and cleaning. A variety of no-code tools are recommended, such as tools for converting websites to LLM-friendly formats, and tools for Twitter data crawling and document summarization. Storage tips are also introduced, emphasizing that the organization of data is more important than complex architecture. With these tools, users can efficiently organize data and provide high-quality input for the training of AI agents.
The following is the original content (the original content has been reorganized for easier reading and understanding):
We see many AI agents launched today, 99% of which will disappear.
What makes successful projects stand out? Data.
Here are some tools that can make your AI agent stand out.

Good data = good AI.
Think of it like a data scientist building a pipeline:
Collect → Clean → Validate → Store.
Before optimizing your vector database, tune your few-shot examples and prompt words.

I view most of today’s AI problems as Steven Bartlett’s “bucket theory” — solving them piece by piece.
First, lay a good data foundation, which is the foundation for building a good AI agent pipeline.

Here are some great tools for data collection and cleaning:
Code-free llms.txt generator: convert any website to LLM-friendly text.

Need to generate LLM-friendly Markdown? Try JinaAI's tool:
Crawl any website with JinaAI and convert it to LLM-friendly Markdown.
Just prefix the URL with the following to get an LLM-friendly version:
http://r.jina.ai<URL>

Want to get Twitter data?
Try ai16zdao's twitter-scraper-finetune tool:
With just one command, you can scrape data from any public Twitter account.
(See my previous tweet for specific operations)

Data source recommendation: elfa ai (currently in closed beta, you can PM tethrees to get access)
Their API provides:
Most popular tweets
Smart follower filtering
Latest $ mentions
Account reputation check (for filtering spam)
Great for high-quality AI training data!

For document summarization: Try Google's NotebookLM.
Upload any PDF/TXT file → let it generate few-shot examples for your training data.
Great for creating high-quality few-shot hints from documents!

Storage Tips:
If you use virtuals io's CognitiveCore, you can upload the generated file directly.
If you run ai16zdao's Eliza, you can store data directly into vector storage.
Pro Tip: Well-organized data is more important than fancy schemas!

You may also like

After being questioned by Vitalik, L2s are collectively saying goodbye to the "cheap" era
WEEX AI Trading Hackathon Paris Workshop Reveals: How Retail Crypto Traders Can Outperform Hedge Funds
Witness how WEEX's Paris AI Trading Hackathon revealed AI's edge over human traders. Explore key strategies, live competition results & how to build your own AI trading bot.

U.S. Oil (USOR) Price Prediction 2026–2030
Key Takeaways U.S. Oil (USOR) is a speculative Solana-based crypto project that aims to index the United States…

USOR Surges on Meme Narrative Despite No Real-World Asset Backing
Key Takeaways: USOR, a Solana-based token, has seen a notable surge driven by speculative narratives rather than verifiable…

How to Buy U.S. Oil Reserve (USOR) Cryptocurrency
Key Takeaways U.S. Oil Reserve (USOR) is a Solana-based token primarily traded on decentralized exchanges (DEXs). Claims have…

USOR vs Oil ETFs: Understanding Why the ‘Oil Reserve’ Token Doesn’t Track Crude Prices
Key Takeaways The U.S. Oil Reserve (USOR) token has become noteworthy for its claims, yet it does not…

Trend Research Reduces Ether Holdings After Major Market Turbulence
Key Takeaways: Trend Research has significantly cut down its Ether holdings, moving over 404,000 ETH to exchanges recently.…

Investors Channel $258M into Crypto Startups Despite $2 Trillion Market Sell-Off
Key Takeaways: Investors pumped approximately $258 million into crypto startups in early February, highlighting continued support for blockchain-related…

NBA Star Giannis Antetokounmpo Becomes Shareholder in Prediction Market Kalshi
Key Takeaways: Giannis Antetokounmpo, the NBA’s two-time MVP, invests in the prediction market platform Kalshi as a shareholder.…

Arizona Home Invasion Targets $66 Million in Cryptocurrency: Two Teens Charged
Key Takeaways Two teenagers from California face serious felony charges for allegedly attempting to steal $66 million in…

El Salvador’s Bukele Approval Reaches Record 91.9% Despite Limited Bitcoin Use
Key Takeaways: El Salvador President Nayib Bukele enjoys a record high approval rating of 91.9% from his populace,…

Crypto Price Prediction for February 6: XRP, Dogecoin, and Shiba Inu’s Market Movements
Key Takeaways: The crypto market experienced a notable shift with Bitcoin’s significant surge, impacting altcoins like XRP, Dogecoin,…

China Restricts Unapproved Yuan-Pegged Stablecoins to Maintain Currency Stability
Key Takeaways: China’s central bank and seven government agencies have banned the issuance of yuan-pegged stablecoins abroad without…

Solana Price Prediction: $80 SOL Looks Scary – But Smart Money Just Signaled This Might Be the Bottom
Key Takeaways Despite Solana’s descent to $80, some traders find security as smart money enters the fray, suggesting…

XRP Price Prediction: Major Ledger Upgrade Quietly Activated – Why This Could Be the Most Bullish Signal Yet
Key Takeaways: The activation of the Permissioned Domains amendment on XRPL represents a significant development in XRP’s potential…

Dogecoin Price Prediction: Death Cross Confirmed as DOGE Falls Below $0.10 – Is DOGE Reaching Zero?
Key Takeaways The death cross event signals potential bearish trends for Dogecoin as its price dips under $0.10,…

Stablecoin Inflows Have Doubled to $98B Amid Selling Pressure
Key Takeaways Stablecoin inflows to crypto exchanges have surged to $98 billion, doubling previous levels amidst heightened market…

Coinbase UK Executive Declares Tokenised Collateral a Mainstream Financial Force
Key Takeaways Tokenised collateral is transitioning from its initial experimental stages into becoming core infrastructure within financial markets.…
After being questioned by Vitalik, L2s are collectively saying goodbye to the "cheap" era
WEEX AI Trading Hackathon Paris Workshop Reveals: How Retail Crypto Traders Can Outperform Hedge Funds
Witness how WEEX's Paris AI Trading Hackathon revealed AI's edge over human traders. Explore key strategies, live competition results & how to build your own AI trading bot.
U.S. Oil (USOR) Price Prediction 2026–2030
Key Takeaways U.S. Oil (USOR) is a speculative Solana-based crypto project that aims to index the United States…
USOR Surges on Meme Narrative Despite No Real-World Asset Backing
Key Takeaways: USOR, a Solana-based token, has seen a notable surge driven by speculative narratives rather than verifiable…
How to Buy U.S. Oil Reserve (USOR) Cryptocurrency
Key Takeaways U.S. Oil Reserve (USOR) is a Solana-based token primarily traded on decentralized exchanges (DEXs). Claims have…
USOR vs Oil ETFs: Understanding Why the ‘Oil Reserve’ Token Doesn’t Track Crude Prices
Key Takeaways The U.S. Oil Reserve (USOR) token has become noteworthy for its claims, yet it does not…